ar X iv : m at h / 03 10 11 1 v 1 [ m at h . G T ] 8 O ct 2 00 3 On Kontsevich Integral of torus knots ∗

نویسنده

  • Julien Marché
چکیده

We study the unwheeled rational Kontsevich integral of torus knots. We give a precise formula for these invariants up to loop degree 3 and show that they appear as a coloring of simple diagrams. We show that they behave under cyclic branched coverings in a very simple way. Our proof is combinatorial: it uses the results of Wheels and Wheelings and new decorations of diagrams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 03 10 29 5 v 1 [ m at h . D G ] 1 8 O ct 2 00 3 Isomorphisms of algebras of smooth functions revisited ∗

A short proof of the fact that isomorphisms between algebras of smooth functions on Hausdorff smooth manifolds are implemented by diffeomorphisms is given. It is not required that manifolds are second countable or paracompact. This solves a problem stated by A. Wienstein. Some related results are discussed as well.

متن کامل

ar X iv : m at h / 99 02 05 8 v 1 [ m at h . G T ] 8 F eb 1 99 9 The limit configuration space integral for tangles and the Kontsevich integral

This article is the continuation of our first article (math/9901028). It shows how the zero-anomaly result of Yang implies the equality between the configuration space integral and the Kontsevich integral.

متن کامل

ar X iv : m at h / 02 10 17 4 v 1 [ m at h . G T ] 1 1 O ct 2 00 2 GENERATING FUNCTIONS , FIBONACCI NUMBERS AND RATIONAL KNOTS

We describe rational knots with any of the possible combinations of the properties (a)chirality, (non-)positivity, (non-)fiberedness, and unknotting number one (or higher), and determine exactly their number for a given number of crossings in terms of their generating functions. We show in particular how Fibonacci numbers occur in the enumeration of fibered achiral and unknotting number one rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004